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Fig. 1. The structure of the SuperPower HTS tape. The superconducting
REBCO layer is shown in black [1].
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This work aims to study the biaxial strain dependence of the critical current density J. of SuperPower
APC REBCO tape at 77 K in applied fields up to 0.7 T.

The strong Lorentz forces and differential thermal contraction experienced in a fusion magnet system
will induce 2D strain. Hence understanding the behaviour of the critical parameters of REBCO

future magnetically confined fusion devices.

under strain is essential.

Higher magnetic fields will enable more compact fusion devices so it is desirable to use HTS tapes in
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biaxial strain, g,,€, at 77 K (and 4.2 K).

Initial Results

strain profile on the 2D strain board with applied strain. The solid black lines show the upper and lower
strains of € =-0.5% and = 0 %. transition criteria of E = 100 uWVm™ and E = 10 pVm™.

Field-angle measurements — Samples | & 2

* Jc was measured as a function of angle (-15° < 0O <
195°) at 0.3T, 0.5 T and 0.7 T for Sample 2 (Fig. 4).

* Data from Sample | are also shown. This sample
was degraded due to excessive heating, but the data

show agreement with Sample 2 when scaled by |.13.
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Uniaxial strain measurements — Sample 3

Jc was measured as a function of strain applied in the x
direction (-0.4% =< g < +0.3%).

During an initial strain cycle (cycle |), Jc was measured
at 0.3T, 0.5 T and 0.7 T. During 4 subsequent strain
cycles, it was only measured at 0.5 T.

All cycles display reversibility and the expected inverse
parabolic behaviour.

The offsets in Jc between different measurement days
is approximately that expected from changes in
hitrogen temperature due to variations atmospheric
pressure .

The offsets in Jc may also be attributed to thermal
cycling of the sample to room temperature.

An angular variation of ~ 2.7° is be sufficient to explain
the observed offsets in Jc.

Conclusions & Future Work

I. Jc measurements versus field, field-angle and uniaxial strain have been completed using a biaxial strain

apparatus.

2. In future: the probe angle will be set more precisely using a Hall sensor; the nitrogen temperature will
be monitored to correct for it's impact on Jc; biaxial applied strains will be measured; the design of the
strain board will be further optimised to improve the strain profile.
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Fig. 5: I_versus strain at 0.5 T, for 5 uniaxial strain cycles.

A data point at -0.4% strain in cycle 5 was removed due to
an electrical short affecting the measurement.

55.0 1

52.5 1

50.0 -

47.5 -

lc (A)

42.5 -
40.0 1
37.5 1

35.0 -1

Fig. 6:

first uniaxial strain cycle.
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