The biaxial strain dependence of J_c in HTS REBCO tapes at 77 K up to 0.7 T

Daniel Scobbie*, Charles W. A. Gurnham, Mark J. Raine and Damian P. Hampshire

Superconductivity Group, Department of Physics, Durham University, DH1 3LE, UK

*daniel.scobbie@durham.ac.uk

Introduction

Copper Stabilizer			
S	ilver Overlayer		
20 µm	(RE)BC	CO - HTS (epitaxial)	
	2 µm	Buffer Stack	
* E		Γμm ~0.2 μm Substrate	
		50 μm	
* not to scale: SCS 4054		~1.8 µ	Jm

- This work aims to study the biaxial strain dependence of the critical current density J_c of SuperPower APC REBCO tape at 77 K in applied fields up to 0.7 T.
- The strong Lorentz forces and differential thermal contraction experienced in a fusion magnet system will induce 2D strain. Hence understanding the behaviour of the critical parameters of REBCO under strain is essential.

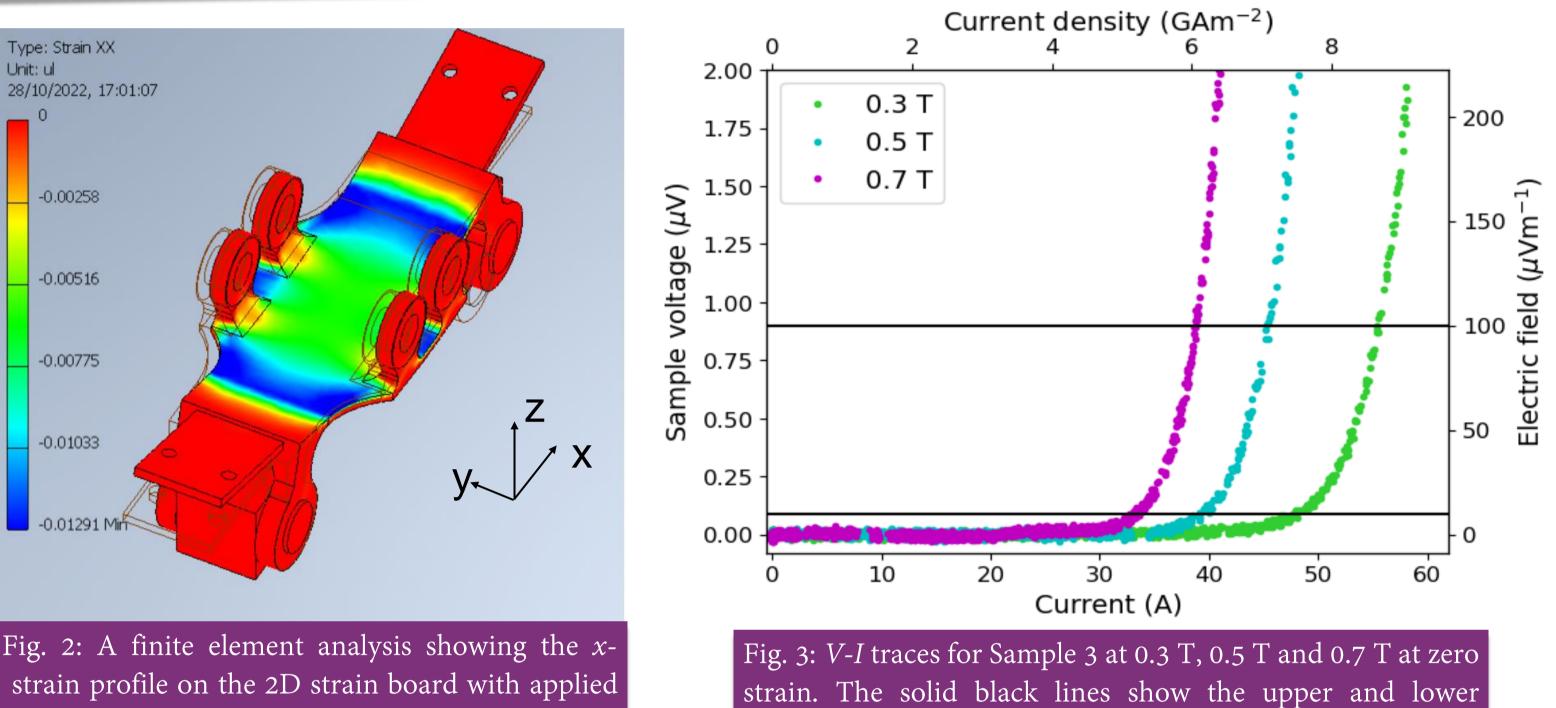
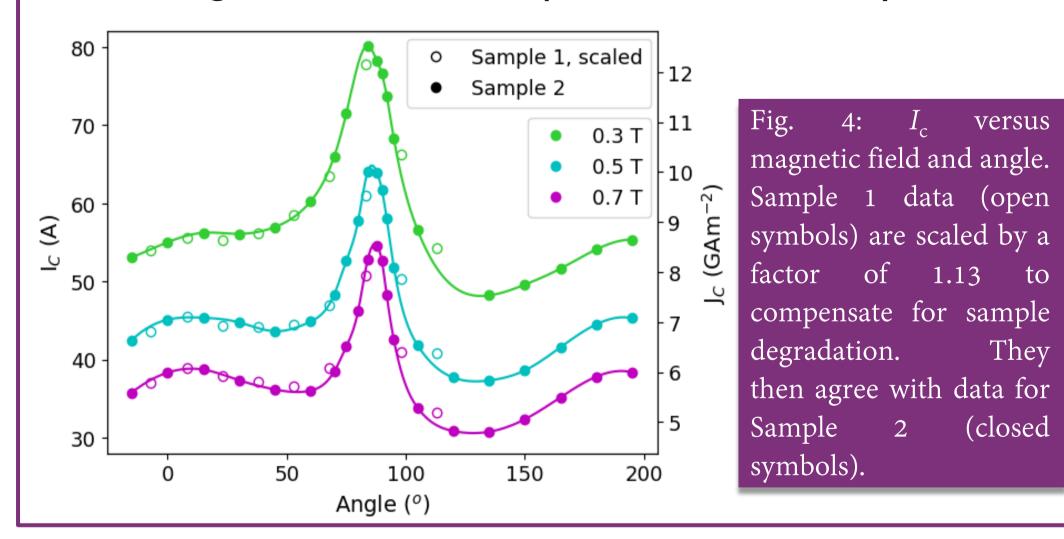


Fig. 1: The structure of the SuperPower HTS tape. The superconducting REBCO layer is shown in black [1].

Higher magnetic fields will enable more compact fusion devices so it is desirable to use HTS tapes in future magnetically confined fusion devices.

Apparatus and Methods

- The HTS sample is soldered to the springboard made from copper-beryllium alloy (CuBe) using lead-tin solder.
- Strain can be applied to the springboard in both x- and ylacksquaredirections. ε_x can be changed in situ at cryogenic temperatures. ε_v must be applied before cooling and is then fixed. Strain is measured using a 2D strain gauge.
- measured using standard 4 terminal transport is C measurements and defined by an electric field criterion of E =100 μVm⁻¹.
- We can measure Jc versus field strength B, field angle θ and biaxial strain, ε_x , ε_y at 77 K (and 4.2 K).



transition criteria of E = 100 μ Vm⁻¹ and E = 10 μ Vm⁻¹.

Initial Results

Field-angle measurements – Samples 1 & 2

- Jc was measured as a function of angle (-15° $\leq \theta \leq$ 195°) at 0.3T, 0.5 T and 0.7 T for Sample 2 (Fig. 4).
- Data from Sample I are also shown. This sample was degraded due to excessive heating, but the data show agreement with Sample 2 when scaled by 1.13.

Uniaxial strain measurements – Sample 3

strains of $\varepsilon_x = -0.5$ % and $\varepsilon_y = 0$ %.

- Jc was measured as a function of strain applied in the x direction (-0.4% $\leq \varepsilon_x \leq +0.3\%$).
- During an initial strain cycle (cycle 1), /c was measured at 0.3T, 0.5 T and 0.7 T. During 4 subsequent strain cycles, it was only measured at 0.5 T.
- All cycles display reversibility and the expected inverse parabolic behaviour.
- The offsets in *J*c between different measurement days is approximately that expected from changes in nitrogen temperature due to variations atmospheric pressure.
- The offsets in Jc may also be attributed to thermal cycling of the sample to room temperature.
- An angular variation of $\sim 2.7^{\circ}$ is be sufficient to explain the observed offsets in /c.

1. Jc measurements versus field, field-angle and uniaxial strain have been completed using a biaxial strain apparatus.

They

2. In future: the probe angle will be set more precisely using a Hall sensor; the nitrogen temperature will

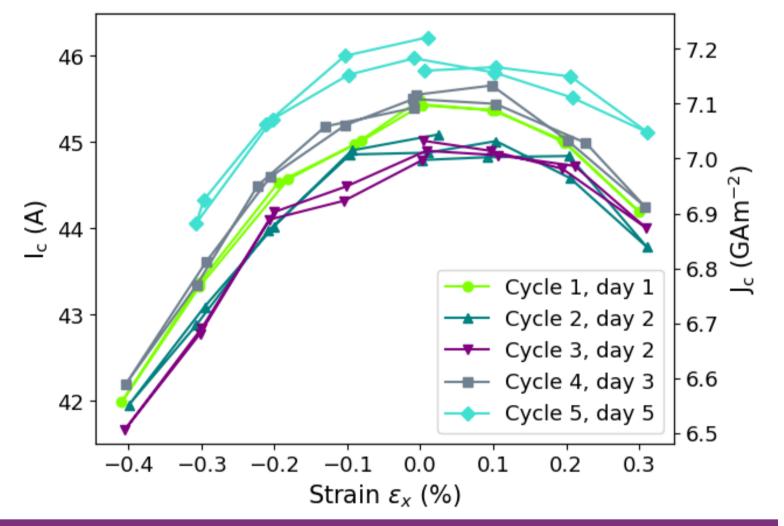
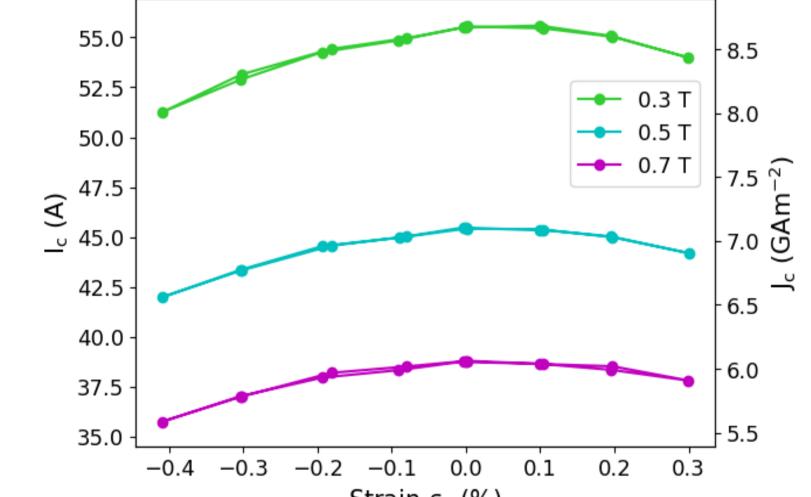



Fig. 5: I_c versus strain at 0.5 T, for 5 uniaxial strain cycles. A data point at -0.4% strain in cycle 5 was removed due to an electrical short affecting the measurement.

be monitored to correct for it's impact on *J*c; biaxial applied strains will be measured; the design of the strain board will be further optimised to improve the strain profile.

Strain ε_x (%)

Fig. 6: I_c versus strain at 0.3 T, 0.5 T and 0.7 T during the first uniaxial strain cycle.

References

[I] Image from Super Power Inc., url: <u>http://www.superpower-inc.com/content/2g-hts-wire</u>

[2] Wimbush, Stuart; Strickland, Nick; Pantoja, Andres (2017). Critical current characterisation of SuperPower Advanced Pinning 2G HTS superconducting wire. Dataset. https://doi.org/10.6084/m9.figshare.4256624.v3

[3] Jack R. Greenwood, Elizabeth Surrey and Damian P. Hampshire, Biaxial Strain Measurements of J_{c} on a (RE)BCO Coated Conductor, IEEE Trans Appl Super 28 (4) 8400705 (2018)

This work is funded by EPSRC grant EP/S022430/1 that supports the EPSRC Centre for Doctoral Training in the Science and Technology of Fusion Energy