Hasan Muhammed

University Of York

I am an Imperial College London physics graduate who is moving onto the CDT after finishing the wonderful Fusion MSc at York. My motivation lies in the prospect of creating a tokamak plasma capable of generating clean and near limitless power. To this end, I will be working on simulations of ‘Turbulence and Instabilities in the Super-X Divertor’ under the supervision of Dr. Ben Dudson.

The divertor is used to extract heat and ash produced by the fusion reaction, minimise plasma contamination, and protect the surrounding walls from thermal and neutronic loads. It is a vital component in any modern tokamak design, but improved control and understanding of the divertor plasma is still required before a viable fusion power plant can be created. Optimisation of the divertor requires enhancement of cross-field transport (through turbulence), as well as to the removal of energy and momentum from the plasma using atoms, molecules and impurity ions.

My work aims to generate a better understanding of the toll that turbulence and instabilities have on the removal of energy and momentum from divertor plasmas. I will use state of the art simulation tools built on the BOUT++ framework and aim to make improvements to the underlying mathematical and physical models, and the implementation of numerical algorithms. I will then look to using these models to understand experimental data and make predictions which can be tested experimentally on the upcoming UK flagship tokamak experiment, MAST-Upgrade. One of the key features of this tokamak is the Super-X Divertor that implements a long-legged divertor configuration with a more complex magnetic topology.